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The density of states in highly impure semiconductors is studied using a semiclassical or Thomas-Fermi 
type approximation. The "local" density of states is assumed proportional to (E—v)112, where V is the local 
potential. The problem then reduces to the calculation of the distribution function for the potential, which 
is found to be a Gaussian in the high-density limit. It is clear that this approach predicts tails on both band 
edges which are identical except for a multiplying factor of (ra*)3/2, the density-of-states mass. The important 
contributions to the potential variation near the average potential are shown to arise from fluctuations in 
impurity clusters whose volume is of the order of the cube of the screening length. For energies far below 
the average potential the important cluster sizes are much smaller than the screening length cubed. Their 
size is determined by the kinetic energy of localization, an effect which is not accounted for by the (E—1))1/2 

assumption. The Thomas-Fermi method involves a number of approximations, all of which are valid in the 
limit of high density. The most serious approximation results from the improper treatment of the kinetic 
energy of localization which requires (naon)lll2^>l for validity. Because of this requirement, the method is 
never highly accurate in any attainable concentration range. The effect of potential fluctuations on tunnel 
diode I-V characteristics is also studied. The results agree satisfactorily with experimental studies of silicon 
junctions by Logan et al. 

I. INTRODUCTION AND CONCLUSIONS 

TH E problem of the band structure of impure semi­
conductors has been most extensively studied in 

one dimension.1 Quantitative three-dimensional cal­
culations have been performed by Parmenter2 using 
perturbation theory and assuming a screened Coulomb 
model for the impurities. More recently Wolff3 has used 
a more rigorous perturbation-type approach. He treats 
electron-electron effects ab initio and justifies the 
screened Coulomb model for the impurities in the high-
concentration limit. In this limit electron-electron 
effects introduce a relatively small change in effective 
mass from the pure crystal value. Electron-electron 
correlation also introduces an additive energy constant, 
not correctly given by taking the screened Coulomb 
model literally. A treatment similar to Wolff's has also 
been given independently by Bonch-Bruevich.4 

More recent work by Bonch-Bruevich5 and Keldysh6 

has been presented at the Exeter Conference. Bonch-
Bruevich makes a semiclassical or Thomas-Fermi type 
of approximation so that his approach has a good deal 
of overlap with the present paper. An outline of our 
approach was also given at Exeter.7 A different ap-

1 M. Lax and J. C. Phillips, Phys. Rev. 110,41 (1958); H. Frisch 
and S. Lloyd, ibid. 120, 1175 (1960); J. R. Klauder, Ann. Phys. 
(N.Y.) 14, 43 (1961). For a closely related problem see also 
F. J. Dyson, Phys. Rev. 92, 1331 (1953). 

2 R. H. Parmenter, Phys. Rev. 97, 587 (1955); 104, 22 (1956). 
3 P. A. Wolff, Phys. Rev. 126, 405 (1962). 
4 V. L. Bonch-Bruevich and A. G. Mironov, Fiz. Tverd. 

Tela, 3, 3009 [translation: Soviet Phys.—Solid State 3, 2194 
(1962)]. 

5 V. L. Bonch-Bruevich, in Proceedings of the International 
(Conference on the Physics of Semiconductors at Exeter, July, 1962 
(The Institute of Physics and the Physical Society, London, 
1962), p. 216. 

6 L . V. Keldysh, paper presented at the Exeter Conference 
but not in the Proceedings. 

7 E. O. Kane, in Proceedings of the International Conference 
on the Physics of Semiconductors at Exeter, July, 1962 (The 
Institute of Physics and the Physical Society, London, 1962), 
p. 252. 

proach using spectral moments calculated by pertur­
bation theory was also outlined by the author at Exeter7 

and will be treated more fully in a forthcoming 
publication. 

In the present paper we make the screened Coulomb 
approximation at the outset. We further make a semi-
classical or Thomas-Fermi type approximation wherein 
we assume that the local potential is sufficiently slowly 
varying that a local density of states can be defined just 
as if the potential were constant. The calculation of the 
over-all density of states then reduces to the calculation 
of the distribution function for the potential. We find 
that with suitable further approximations the distribu­
tion function for the potential has a Gaussian form. 
Keldysh6 also finds a Gaussian dependence similar to 
ours but with different numerical factors for the half-
width. 

In Sec. I I we describe our model Hamiltonian. In 
Sec. I l l we make the "uniform cluster" approximation. 
The probability of finding m atoms in a sphere of 
volume w is computed rigorously but the potential is 
approximated by taking the uniform average over the 
sphere. We show that the most important fluctuations 
occur for a sphere size 

where KD is the reciprocal screening length. Fluctuations 
of m with w fixed lead to a Gaussian distribution for 
the potential. The kinetic energy of localization is also 
treated on this model. For energies very far below the 
average potential, cluster sizes W<ZJWD become im­
portant. The kinetic energy of localization is essential 
in determining the optimum value of w. 

In Sec. I l l we treat the Thomas-Fermi approximation 
less crudely than in Sec. I I . The potential distribution 
function is rigorously represented as an integral follow­
ing a suggestion of Klauder.8 The integral is approxi-

J J. R. Klauder (private communication). 
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mated by the method of stationary phase plus an addi­
tional expansion of the exponent as a power series in 
the potential. To lowest order, the distribution is also 
Gaussian about the average potential with a half-width 
2.1 times greater than that obtained by the uniform 
cluster approximation. The effect of the kinetic energy 
of localization, which is ignored in the Thomas-Fermi 
method, is to cause an averaging or "motional narrow­
ing'? effect to occur which will reduce the half-width to 
a value closer to that given by the uniform cluster 
method. 

In Sec. IV the effect of density-of-state tails on the 
I-V characteristic of tunnel junctions is discussed. The 
semiclassical approach is also used here so that tunnel­
ing in the "band tails" is viewed as ordinary tunneling 
from localized regions of abnormally low-potential 
energy. A number of further approximations are re­
quired to obtain numerical results. Comparison with 
experimental results on silicon obtained by Logan et al.9 

is made. The agreement is quite satisfactory. 

II. MODEL HAMILTONIAN 

We assume the following model Hamiltonian: 

H=H0+Hh (1) 

Hi=Z*(r-n)-Vo, (2) 
i 

e2 

v(r) = exp(—KDr), (3) 
ear 

H0= (p2/2ni*)+C. (4) 

We treat the perfect solid by an effective mass w* 
and dielectric constant €<*. The impurities are repre­
sented by screened Coulomb potentials, Eq. (3), which 
are randomly distributed over lattice sites, r^ with 
average density n. "Go is a constant chosen so that the 
average perturbing potential is zero. The reciprocal 
screening length, KD, is given by the Thomas-Fermi 
model3*10 as 

ao*=€dh2/tn*e2. 

The number of particles, v, in a Debye sphere 
(47T/3)KD~3, is given by 

„= ( 7 T / 3 ) 3 / V % 0 * 3 / 2 / 2 . (6) 

The range of validity of Eq. (5) is J£>>1. For values of 
v much smaller than 1, screening is due to electrons in 
localized orbitals. Although we use Eqs. (5) and (6) 
down to v < 1 it should be emphasized that the formula 
is quantitatively accurate only for large v. I t would be 
desirable to allow KD to be a function of the local im-

9 R. A. Logan and A. G. Chynoweth, following paper, Phys. 
Rev. 131, 89 (1963). 

10 R. B. Dingle, Phil. Mag. 46, 831 (1955). 

purity density rather than only the average density but 
we have not considered this possibility. The model 
Hamiltonian of Eqs. (1) through (4) has been justified 
by Wolff3 in the high density or large v limit. Our defi­
nition of Vo, which corresponds to zero average po­
tential, is a mathematical convenience. The constant 
C, in Eq. (4), depends on the correlation energy of the 
electron gas as shown by Wolff.3 In what follows we 
s e t C = 0 . 

III. "UNIFORM CLUSTER" APPROXIMATION 

In this section we study the model Hamitonian of 
Eqs. (1) through (4) from a very simple point of view. 
Although the assumptions made are rather crude, they 
retain the essential features of the problem. In the next 
section a more quantitative approach is attempted, 
using the results of this section as a guide. 

Our point of view is that some cluster of m atoms in 
a volume w is most important in producing any fluc­
tuations of interest. We consider this cluster embedded 
in a uniform background of average density. The devi­
ation from the average potential [taken as zero accord­
ing to Eq. (2)] is taken to be the uniform average of the 
potential over the volume, w, multiplied by the excess 
of the number m over the average number nw 

V=(m—nw) I v(ri~r2)dridr2/w2. (7) 
J w 

The kinetic energy, Eioc, of the lowest state of an elec­
tron in a spherical box of radius rw is 

Eloc=(ir2/2rw
2)(W/m,*). (8) 

We take the formula for the density of states for a large 
volume 

(2)1/2^*3/2 

p(E) = (E-vyi2w, E-eO>0.84Eioc, 

ir2W (9) 

= 0; £- eU<0.84Eioc 

With this rather arbitrary cutoff choice, 

/

Eloc 

d(E-V)P(E)= (1 /2)2=1. 
-oo 

In Eq. (9) we include a factor 2 for spin. 
The probability of finding m atoms in the volume w 

is given by the Poisson distribution formula 

(nw)m 

P(m,w)=— ernvf. (10) 
ml 

In all our calculations we will assume that the im­
purity ions are randomly distributed. A better approxi­
mation would be to compute the total electrostatic 
energy of a given cluster, Ennct(Tea), and multiply the 
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probability, P(tn,w), computed on the random hypothe­
sis by a factor exp{— Ennct(Tefi)/kTeii} where Teu is 
an effective temperature at which the ions become 
"frozen in." This factor is probably significant in many 
cases of practical interest. An experimental test of its 
significance would be a dependence of any phenomena 
associated with band tailing on the rate of annealing. 
P(m,w) satisfies the normalization condition 

£ P(m,w) = l. 

The over-all density of states is then given by 

(ID 

V2w*3/2 

P ( £ ) = V / [E—V(m,w)Jt2P(m,w)dm; 

E-V>0MEioo. (12) 

We have converted the sum in Eq. (11) to an integral, 
treating m as a continuous variable. A factor V/w for 
the number of clusters in the volume, V, has been in­
cluded. We choose w to maximize the number of states 
below the average potential 

Jfo(0)= f 
J — 0 

P(E)dE. (13) 

By considering fluctuations over a given volume, w, 
we are clearly underestimating the total effect since 
fluctuations over all possible volumes actually occur. 
We attempt to minimize our error by selecting the single 
volume, w, for which density fluctuations contribute 
most strongly to the density of states. The method for 
choosing w is somewhat arbitrary but we feel that maxi­
mizing Mo(0) as a function of w is a reasonable criterion. 
Inserting (12) in (13) we have, 

M0(0) = 
2(2)V2tn*v\ 

3TTW •I v c(-v> 3/2 

- (0 .84E l o c ) 3 / 2 ]P (m^)^ ; 

- e 0>0 .84£ l o c . (14) 

With the use of Stirling's approximation for m!, we may 
write Eq. (10) in the form 

1 
P(m,w)c^ e*, (15) 

(27TW)1/2 

<3M=w—nw+m(ln nw—In m), (16) 

where $ has its maximal value, 0, at the point m—nw, 
Expanding about this point we may write 

P(myw)c 
1 

(2irnw)1/2 
_g—(m—nw)%/2nw (17) 

This expansion is valid for m—nw<^nw. If we substitute 
(17) in (14) and ignore the localization energy £ioc, 
Eq. (14) may be written 

2 5 / 4 r ( 5 / 4 ) w * 3 / 2 F 

M o(0) = (nw)V*KW(KDrw), 
3 T T 5 / 2 & 3 

JCs- f v 
J w 

(ri-r2)dr1dr2/w\ 

(18) 

(19) 

K= {9e2/2ed)KD(KDrw)-*{i(KDrwy 

-(KDrwy+l-(l+KDrwye-2*w}, (20) 

^ ( 4 T T / 3 K 3 , (21) 

where (20) has been evaluated for the screened Coulomb 
potential. The function on the right of Eq. (20) has a 
broad maximum whose peak is at Ki>rw=0.7. Using this 
optimum value, together with Eq. (7), we may write 
Eq. (17) as 

1 f - / c W 0 2 ) 
P (m,w)= exp \. (22) 

( 2 T T ^ ) 1 / 2 2.8rce4 

Substituting KDrw=0.7 in Eq. (8) gives 

Eioc=1.0/c^2/w*. 

Defining an energy scale factor rjf by Eq. (22), 

rjf^(2.Sn/KDyi2(e2/ed), 

we find, using Eqs. (5) and (23) 

i//0.84Eioo= ^1/12ao*1/4/ 2.8. 

(23) 

(24) 

(25) 

According to Eqs. (25) and (12), the kinetic energy of 
localization has a significant effect on the density-of-
states problem for the concentration range of interest, 
n^O.01 to 104. I t could be included as suggested in 
Eq. (14), determining a new optimum w. The optimum 
w would naturally increase to reduce the localization 
energy. The increase in cluster size would then reduce 
the fluctuations and narrow the distribution. No drastic 
changes are expected in view of the fact that Mo(0) has 
a broad maximum as a function of w. 

For states far below the ayerage potential, 
m—nw^nWj and the expansion of cp leading to Eq. (17) 
is invalid. In this range <p depends principally on m so 
that, for maximum cp, m should be as small as possible, 
consistent with Eq. (7). This evidently demands w 
small so that K in Eqs. (19) and (20) is large. However, 
w cannot become arbitrarily small on account of the 
kinetic energy of localization. 

We now pick w to maximize p(E). We could have 
used this procedure in place of maximizing MQ(0) in 
Eq. (14). However, we would then have no guarantee of 
a properly normalized P(m,w). States far below the 
average potential contribute so little to the probability 
normalization that no problem arises. 
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In the limit Kofw<Kl, Eq. (20) reduces to 

K= 1.2e2/edrw, KDrw<Kl. (26) 

The most important factor determining p (E) in Eq. (12) 
for large \E\ is P(m,w). To find the optimum w we 
maximize <£ in Eq. (16), neglecting the average number 
nw compared to m. m is evaluated at E—cO = 0.84Eioc. 
The maximum in <3> then occurs for dm/drw=0. 

then simply 

p(E) = / (E-V)V2F(V)dV. (32) 

rw=2M/(m^2\E\^2), 

m=3A\E\^2edfi/(e
2m^2). 

(27) 

(28) 

We can write the distribution function F(V) as an 
integral using a method due to Klauder.8 From the 
definition 

r m 
F(V) = lim / 5{V+VQ-T, <rx)} 

m -> «i J i=\ m =nV 

XdTidtr-'drjV™, (33) 

Substituting (27) and (28) in Eq. (16), expanding <£ to 
first order in Am about the maximum and taking the 
square root in Eq. (12) as a constant = (0.84£ioc)

1/2, we 
find the approximate result 

>(£> 
fnfWAEWwV/nwey 

¥ \ irm / TT2\ m I 

w=L3XlO*a0*
z/™>\ 

where n is the average impurity density. Expanding the 
8 function in a Fourier series gives 

l r 
F(V) = lim — / da exp{ia[V+V0-T< »(*<)]} 

m - £ 2irJ *-i 

ln(m/^w) (29) We then write 
XdtydrjV™. (34) 

with w given by Eq. (28). 
In summary, we have estimated the effects of fluc­

tuations for two energy regions. Near the average po­
tential the important fluctuations take place in a 
volume of the order of a Debye sphere, (4T/3)KD~Z. 
The density of states is approximated by Eqs. (12) and 
(22). At very low energies, the important fluctuations 
occur for very much smaller volumes. The density of 
states is then given by Eq. (29). The fluctuations repre­
sented by Eq. (22) involve only the potential and, 
hence, produce "tails" on both band edges. On the other 
hand, the highly localized clusters represented by 
Eq. (29) are important only for majority carriers which 
are bound to such regions, whereas minority carriers 
are repelled. 

IV. THOMAS-FERMI METHOD 

In this section we refine the treatment of the previous 
section to take more accurate account of the fluctua­
tions in the potential. We still treat the kinetic energy 
in the approximate manner characteristic of the 
Thomas-Fermi method. The assumption is made that 
the potential is sufficiently slowly varying that one can 
define a "local" density of states using the formula ap­
propriate to a large volume. 

f e-i*v{r)dr/V:== 1 + f (e-
iav^-l)dr/V. (35) 

J V J V 

If v (r) tends to zero sufficiently rapidly, the integral on 
the right of Eq. (35) becomes infinitesimal for large V. 
Using 

lim (l+a/V)nV = ean, 
y->«5 

we obtain 

F(V) = —j ^expk , a( 0 U+ e 0 0 ) 
2WJ-O0 { 

+n Ue-^^-l^drl. (36) 

Equation (36) is Klauder's result. 
Equation (36) is only well defined for well-behaved 

potentials v(r). In order to make the screened Coulomb 
potential well behaved, we can introduce a cutoff 
parameter, r0, and replace the divergent r~l factor by 
(r+ro) - 1 . We discuss this point more fully later on. 

In the limit of large n, the integral in Eq. (36) may be 
evaluated using the method of stationary phase.11 

Ap(E)=sf2ni*V2AV(E-Vy!2/ir2W. (30) 

Equation (25) of Sec. I l l shows that this approximation 
is never well satisfied. 

We define the potential distribution function, F(V), 
by 

Ap = F(V)AV7 (31) 

where Ap is the probability of finding the potential 
between V and V+AV. The total density of states is 

ia(V+V0)+n [e-^^-lldr, (37) 

= i(V+V0)~in / v(r)e-iavWdr, (38) 

= -nl v2(r)e-iavWdr. (39) 

dcp 

da 

d2<p 

da2 

If ai are the solutions of d<p/da=0 and (Pi=<p(oti), 
(p/'== (d2(p/da2)a., the method of stationary phase gives 

11 The author thanks D. Arnush for assistance in the evaluation 
of Eq. (36). 



for F(V) in Eq. (36) 

FCU) = Ee<V(-2^/')1/2. 

IMPURE SEMICONDUCTOR BAND STRUCTURE 

_ ! j ! j , , , , p-

83 

(40) 

One point of stationary phase is easily found, assuming 
a small and expanding the exponentials in powers of a. 
(The contribution of other possible points of stationary 
phase is unclear. The example treated in the Appendix 
suggests that they are not too important.) 

d<p% oo (—ia) 
0 = — = i V - i n £ 

da ™=i m \ 

<Pi=—n Z 
m=2 

<Pi"=—n Y, 

oô  (—ia)m(m— 1) 

(-ia) 
ml 

jv«+l(r)dT, (41) 

/ vm(r)dr, (42) 

ra=0 ml 

We have used 

V0=n / v 

vm+2(r)dr. 

(r)dr, 

(43) 

(44) 

in keeping with the definition that the perturbing po­
tential have zero-average value. Equation (41) has been 
used to eliminate "0 in Eq. (37) to give (42). 

The series expansion in a in Eq. (41) may be inverted 
to give a as a power series in V. The result is then sub­
stituted in (42) and (43) to give (pi and <p{' as a power 
series in V. 

V2 i" V* / v*(r)dt 

2.0 

1.6 

y 1.2 

0.8 

0.4 

n 

I ' " " I I 

-

-

/ 

... ^^T I I 

I I I I 

X \ 

/ \ 

A 

i i i 

<Pi=— n< 

V4 

+-

j2n2 v2(r)dr 6n*( v2(r)dt\ 

[v*(r)dr ( v*(r)dr\ 

24 
(jv2(r)dr\ s(jv2(r)dt\ 

cp/'^-n v2(r)dt-\ . 

+ ••• 

- 2 - 1 0 1 2 3 4 5 

X 
(b) 

FIG. 1. (a),(b). Thomas-Fermi density of states versus energy 
in dimensionless variables. 

The Thomas-Fermi density of states is then found by 
substituting Eq. (47) in Eq. (32). Using dimensionless 

(45) variables, we can express the results in terms of a func­
tion y(x) with no parameters. 

p(E) = y (E/r})tn**/2 (2vy'2 VT~2h~\ (48a) 

y{x) = 7Tl^( ( x - f ^ e x p t - f 2 ) ^ , (48b) 
J —oo 

(46) 

Taking just the leading term in (45) and (46), we 
obtain from (40) 

F(V)=(l/(irr2r))exp(-V2/V
2), 

^(e2/ed){ATrn/KDyi\ 

where we have used 

y(x) is plotted in Fig. 1. I t is clear from Eq. (48b) that 
p^E112 at high energies and p^exp(—E2/rf) at low 

(47) energies. 
I t is of interest to compare Eq. (47) with Eq. (22) 

of Sec. I I I . Comparing Eqs. (32) and (12) and using 
(7) and (19), we find 

v2(r)dr=2weA/ed
2KD 

for the screened Coulomb potential. 

(48) 
F(V) = P(m,w)/K. (49) 

For the optimum w, Korw=0-7 

P(m,w)/K= (2.1/V'V) e x p [ - (2.11)/ij)*J (50) 
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The similarity of Eqs. (50) and (47) demonstrates that 
(47) results from clusters whose size is of the order of 
the Debye sphere, 4x/(3/a>3). The more accurate result, 
Eq. (47), is seen to give a distribution broader by a 
factor 2.1 than the crude estimate of Eq. (50). One 
would expect Eq. (47) to give a broader distribution 
than Eq. (50) due to the effect of "fluctuations within 
fluctuations'' which are ignored in deriving Eq. (50). 

We have seen in Eq. (25) that the energy of localiza­
tion is a significant effect, not properly accounted for 
by the Thomas-Fermi method. The nonlocalizability 
results in an averaging over the smaller scale fluctua­
tions and a consequent narrowing of the density of 
states distribution. Hence, the best effective distribution 
probably lies somewhere between those of Eqs. (47) 
and (50). Kinetic energy (motional) narrowing of the 
distribution function will also affect Eq. (50), though 
to a lesser degree. This could be estimated in the manner 
suggested in Sec. I I I . A further narrowing effect which 
we have not considered is that KD should really be a 
function of the local rather than the average density. 
This should not be a large effect, however. 

We may also estimate the range of validity of Eq. (47) 
by considering the ratio of the neglected terms in (45). 

/
vz (r)dx 

= , (51) 

I v2(r)drj 

/ vA(r)dr 
<Pi^ V2 J 9/<Pi™\2 

= + _ \ (52) 
cp^ 12n2 / r \ 4 4 \ < ^ 2 V 

f v2(r)dr) 

The superscript on <p denotes the power of V. 
If the screened Coulomb interaction is substituted 

in y V and y V the integrals are seen to diverge. We 
therefore introduce a "cutoff" parameter r$ and write 

e2 

v(r) = exp(-jcz>r). (S3) 
€d(r+r0) 

This device obviously de-emphasizes the contribution 
to the distribution function from very close impurities. 
These small distance contributions are, in fact, im­
portant for energy states very far below the average 
potential, as we have seen in Sec. I I I . In determining 
these contributions it is essential to take proper account 
of the kinetic energy of localization. We have no way 
here of improving on the estimate made in Sec. I I I . 
Equation (47) is only useful for computing the fluctua­
tions due to clusters of the size of the Debye volume. 
Hence, we take r0 as large as possible but still suffi­

ciently less than KD~1 SO that Eq. (48) is not seriously 
altered. 

We then get the rough estimates 

/^(r)^rc-47r(e2/ed)3, 

(54) 

\v±{r)dT~{±Tr/3n){e2/u)\ 

^ ( 3 ) / ^ ( 2 ) ^ _ (VlCD2/37rn) ( € d / e 2 ) ? (55) 

ipM/<pW~(V*KD*/144n*ir%) (ed
2a0*A4). (56) 

For all densities of interest, Eq. (55) is the more strin­
gent condition. Using 13 = 77 as suggested by Eq. (47), 
we have 

^ 3 ) / ^ % - 4 / ( 3 i r 1 / V V ) . (57) 

Although Eq. (57) is not well satisfied in the range 
^=0 .01 to 104, it is evidently better satisfied at large n 
than the localization condition of Eq. (25); hence, the 
latter remains the most serious limitation on the accu­
racy of these results for large n. 

We should also inquire how accurate the approxima­
tion of stationary phase itself may be. In the Appendix, 
the method of stationary phase applied to a simple 
soluble problem is found to be equivalent to using 
Stirling's approximation for ml in the exact solution 
where m is the number of atoms (square wells) con­
tributing to the potential. Since Stirling's approxima­
tion is only 8% in error for m— 1 and less for m> 1, this 
is not serious by our standards. The number of atoms 
in a Debye sphere is given by Eq. (6). 

V. BAND-TAIL TUNNELING IN THE SEMI-
CLASSICAL APPROXIMATION 

In calculating the effect of density of states tails on 
the I-V characteristic of a tunnel junction, we use a 
semiclassical approach. We assume, as in Sec. I l l , that 
electrons can be localized within a volume w, and that 
their distribution in energy is given by the usual treat­
ment for a box with periodic boundary conditions. We 
take the box to be a cube for simplicity. 

We then divide all space into cubes of volume w, 
which we take to be the "correlation" volume for the 
potential. We oversimplify the correlation problem by 
assuming the potential constant within a given cube 
and uncorrelated between different cubes. We also con­
sider a division of all space into one-dimensional arrays 
of cubes along the direction of the junction field. We 
consider the tunneling electrons to progress along this 
array and we assume that different arrays make in­
dependent parallel contributions to the tunneling 
current. Hereafter we focus our attention on the con­
tribution of a single array. 

We will assume a constant field model for the junction 
and ignore all fluctuation effects in the junction itself. 
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We then consider the contribution to the tunnel 
current, for a cube at a distance Xi from the junction 
edge, due to electrons of energy, E. The definition of 
symbols is shown in Fig. 2. The probability dp of finding 
the potential at the value, V is 

dp=F(V)dX)dx/wU*, (58) 

where F(V), the potential distribution function, is de­
fined in Eq. (31) of Sec. IV. Equation (58) is valid only 
in the limit dx^>wl,z which implies that wVd is much 
smaller than all other lengths of interest in our problem. 
This is not the case but we make the approximation for 
reasons of simplicity so that x can be treated as a con­
tinuous variable.12 

We assume the kinetic energy of motion perpendicu­
lar to the junction field, Ei, to be a constant of the 
motion. The total tunnel current is then given by the 
expression 

J=AI dES £&-**, (59) 
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(60) 
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(62) 

(63) 

(64) 

The prefactor A and the integrals fdEdEudEw are 
the same as for indirect tunneling with the perfect 
crystal band structure.13 The integrals arise from 
density-of-states factors. 

The integration over x\ contains a factor exp(—2KI#I) 
which is the tunneling attenuation factor for the elec­
tron to tunnel from the point x± to the junction. The 
attenuation in traversing the junction is included sepa­
rately in the factor exp(—X0—Xi—X2). The additional 
attenuation, exp(—2KIXI), is computed with respect to 

12 Although the transition to continuous x appears to be a 
further approximation, in a sense it is an improvement since the 
correlation boxes should be randomly located. The continuous 
variable assumption does not properly treat the correlation 
problem however, which demands no change of potential over 
distance <&wm. 

13 E. O. Kane, J. Appl. Phys. 32, 83 (1961). 
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FIG. 2. Definition of symbols used in calculating I-V 
characteristic of tunnel junction. 

the averaged band edge, Ei, as given by Eq. (63), which 
represents a further approximation since it is really 
exp(—2KX) which should be averaged over the potential 
fluctuations. 

The factor (Pi, given by 

<Pi=FiCl)i) expj -( f FiCoO^UiWw!178 , 

(P2^F2(V2)exp\-( f F2(V2)dV2}x2/w2
1« , 

(65) 

gives the probability of finding the potential at 'Ui at 
the point Xi and of not finding the potential below ei 
between 0 and xi. The band edge, Eh is taken as the 
value for the average potential. The exponential factor 
in Eq. (65) is essential to avoid overestimating the 
current. The electron is to be counted as tunneling from 
the first cube in which the potential is sufficiently low 
for a real state to exist. We assume that w is large 
enough that we can ignore the discrete character of the 
quantum states. 

The tunneling attenuation factors can be easily shown 
to have the form 

mr 

X ^ + (Exi/£x)-4(2m1/)1/2e1
3/2/3M, 

X2^ - CE12/Ex)-4(21 m* | )Wet*/3F*, 

Ei^M/(2y/2mrx
:"ll2EG^)} 

\,=±(2mrx*)ll2EGvy(?>iiF), 
, * - i = m i / - i + | m 2 / | - i . 

(66) 

(67) 

F is the constant force on the electron in the junction, 
assumed positive. Xo is the attenuation exponent for an 
electron with En—Ei2=0 with classical turning points 
in the junction region. Xi and X2 contain the additional 
effects of the perpendicular energy and the correction 
due to the fact that the electron may enter the junction 
at a point where its ^-kinetic energy, fi2kx

2/2?nix*, is 
already negative. This happens whenever ei is negative. 
This latter effect reduces the amount of tunneling at­
tenuation in the junction region. 
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The integrals over dx{ and dVi in Eqs. (59) and (60) 
are easily performed 

S iCE-Ei ) = 

SttEt-E)--

J-

E—Ei 

E2-E 

Erfc(—ei/t?i)e 

l€2 

2(x)1/2/ciWi1/3+Erfc(- ei/m) 

Erfc(-€2A2)e"X 2 

2(7r)1%2w2
1/3+Erfc(- e2A2)' 

(68) 

/*EF1 

7 ' 
J EF2 

--A I dES1(E-E1)S2(E2-E)e-^. (69) 
EF2 

In evaluating (68) we have used 

F( e O)=( l /7 r 1 ^)exp( - c 0 2 A 2 ) (70) 

in agreement with Eq. (47). We have also made a 
change of the variable of integration from dEL to de 
using Eq. (61). When e is positive in the integrands of 
Eq. (68) the fractional factors become unity because 
JK=0 according to Eqs. (62) and (63). The second term 
on the right of Eq. (66) is also zero. The contribution 
to the tunnel current is just that of the perfect crystal 
band structure for the case of indirect tunneling. The 
sharp division at e = 0 between contributions from 
"band tails" and contributions from "perfect bands" 
is, of course, an oversimplification which results from 
taking an average K rather than averaging over e~*K*. 
The function S is easily computed but it is a function 
of too many parameters to tabulate. We define a new 
function closely related to S 

S(a:) = dxf-
Eric(-x')exv{bx'*l2+cx'} 

axnl2+Eric(-x') 

J = ^ 1 7 7 2 e x p { - X o ( F ) + ( ^ F - f 1 - f 2 ) / ^ i } 

E-eV+?i\ /?2-E\ 

(71) 

fev , E - e V + h \ rt*-E\ 
X I dE&ii U2 ), (72) 

Jo \ Vi / \ V2 / 

f f = \EFi~Ei\, 

a<=2wi1/«(2»i7,-|f»i,*|)1/V*, (73) 

In deriving Eq. (72) we have used EFI=EI+£I 
= EF2+eV where eV is positive for forward bias. We 
have also chosen an energy zero EF<L—E<L—f 2=0. 

In Figs. 3 and 4 we show Si (a?), S2(x), and j(V) for 
a choice of parameters appropriate to silicon doped 
with ^ = 2.3X1019 acceptors and ^p=4.8X101 9 donors 
forming an abrupt junction. The field is taken as § 
times the maximum field. The value f is appropriate 
for an abrupt junction where the point of stationary 

FIG. 3. SiO), S20) as defined in Eqs. (71) and (73) for silicon 
with WA=2.3X10 1 9 /CC, WD=4.8X10 1 9 /CC. 

phase, KXI=KX2, occurs at the same point as the maxi­
mum field. This requires the condition m 2 x * / ^ i / 
= nA/fiD, which is nearly satisfied for the above doping. 

The appropriate tunneling masses are taken as the 
ellipsoidal mass in the [111] direction for the electrons 
and the light hole mass for the holes. This gives 
raia;*=0.26mo, m 2 /=0.16wo. We have assumed the 
junction plane to have a [111] orientation. We calculate 
Ex= 0.047 eV. 

We allow for the voltage dependence of X0(F) to 
first order 

X0(F)^Xo(0)+(aXo/aF)F. 

Using Eq. (67) together with dF/dV=~F/2V0 for an 
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FIG. 4. (a) Theoretical j(V) for silicon with ^A = 2.3X10 1 9 /CC, 
Wl)=:4.8X1019/cc with v given by Eq. (47). (b) Theoretical j{V) 
for the same parameters as in (a) except that rfs are taken as f 
the value given by Eq. (47). (c) Theoretical j(V) with the same 
doping as in (a) for the perfect crystal band structure, lim 17 -* 0. 
(d) Experimentally determined j(V) for silicon with ?u = 2.3 
X1019/cc, wi>=4.8X1019/cc. 
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FIG. 5. Theoretical characteristic for a range of donor 
concentrations. Tails given by Eq. (47). 

abrupt junction, we calculate dXo/dF=6.5 volts"-1. Vo 
is the total potential change across the junction, 
F 0 =£<H-f i+f2 . 

We compute the Gaussian width % using Eq. (47). 
The appropriate mass in these formulas is the density-
of-states mass Wi=1.04rao, m2=0.58wo. Equation (5) 
for KD does not apply to low density. At very low 
density we know that screening is accomplished by 
binding an electron in a Is state which gives a screening 
length #0

B E /2, comparing exponential tails. (a0
BE is 

the Bohr radius as determined from the binding energy.) 
We take crude account of this fact by using either KD 
from Eq. (5) or 2/#oBE, whichever is larger. We find 
K D I = 1 . 5 X 1 0 7 cm -1, /C J D2=1.1X10 7 cm""1, KBI was found 
from Eq. (5) while Kz>2=2/a0

BE, although Km is only 
10% larger than Eq. (5) would predict. The appropriate 
a0

BE was determined by fitting the simple hydrogenic 
formula to the experimental binding energy. Note 
that this #oBE used in estimating KD is not the same as 
the Bohr radius, #o*, defined in Eq. (5). The latter 
requires the use of a density-of-states mass. The length 
Wi* in Eq. (73) is taken equal to KB<T1. 

Using the above values of KB in Eq. (47) we compute 
77i==0.077 eV, 772=0.063 eV. The constants a,b,c then 
have the values 01=02=1.7, 6i=0.46, Z>2=0.36, ci=1.6, 
c2=1.3. The Fermi levels are fi=0.041 eV, f2=0.051 
eV. The correction to the Fermi level due to the band 
tails is negligible. 

In Fig. 4 we show the theoretical curve for the I-V 
characteristic using the band tails given by Eq. (47). 
Also shown for comparison are the characteristic for the 
perfect crystal (no tails), the characteristic with tails 
half as large as given by Eq. (47), and the experimental 
curve of Logan and Chynoweth.9 The general agreement 
between theory and experiment appears satisfactory in 
view of the roughness of the theoretical approximations. 
The normalization of the experimental curve is arbi­
trary but the relative normalization of the three theo­
retical curves is meaningful. For the same tunneling 
exponent, Xo, more current flows when "tails' ' are 
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FIG. 6. Theoretical characteristic of Fig. 5(c) plotted 
as \og(j/V) versus V. 

present even at very small biases because E± can be 
larger than the perfect crystal limit, f. Since Ei^^rj, 
the effect is significant. 

Experiment appears to favor the curves for which 
the tails have been computed by Eq. (47) rather than 
those half as large. This result was not expected since 
we have argued that a proper treatment of the kinetic 
energy of localization, neglected in deriving Eq. (47), 
would have the effect of averaging over the potential 
variations and, hence, narrowing the tails. However, 
so many approximations have been made in arriving at 
the experimental results that no strong conclusions 
should be based on this point. 

In Fig. 5 we show the theoretical curves as a function 
of donor concentration, UB. The peak voltages in order 
of increasing concentration are 36, 42, and 56 mV as 
compared to 33, 36, and 52 mV as given by Logan and 
Chynoweth. Again, agreement is as good as we have 
any right to expect. 

Because of the many factors entering the theoretical 
analysis, one would hardly expect the results to display 
any simple analytic form such as the empirical relation­
ship j^Ve^v used by Logan and Chynoweth.9 Never­
theless, Fig. 6 shows that this law is not too badly 
obeyed, especially for F > 6 0 mV. A noticeable devia­
tion occurs at lower voltages. 
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APPENDIX: TEST OF STATIONARY 
PHASE METHOD 

We test the method of stationary phase used in 
Sec. IV by applying it to the calculation of the potential 
distribution function for randomly spaced square wells. 

V = v0, r<r0 

= 0, r>r0. 

The exact solution is easily found to be 

F(V)= £ 8(V-mv0)— (nw<>)me-nWQ, 
m=o ml 

(Al) 

(A2) 

wo=4nroz/3, 

where we have used Eq. (10), the probability of finding 
exactly m atoms within the interaction volume WQ about 
the origin, n is the average density. 

The equations analogous to Eqs. (37) through (39) 
become 

<p=iaV+nwo(e-iavo— 1), 

d<p 

da 

d2<p 

da2 

-=iV—invQw0e-iavo, 

-——nVffWQe' hi)*p-iav*. 

(A3) 

(A4) 

(A5) 

The stationary phase points are 

— i a s v 0 = I n (V/nvoWo)+2iris, (A6) 

<Ps = (V/VQ) {1 — 27m—In (V/nv0w0)}—nw0, (A7) 

The distribution function is given by Eq. (40). 

1 
F(V) = Z £ exp(-27rweUAo)] 

S=-oo (27T^0
eO)1/2 

X 
/nv0wQ\z 

\ V J 
exp ( - nwo+V/vo), (A9) 

z=V/v0. 

The sum over s is easily evaluated: 

E **'*= ; , 
s=-s sin|<p 

00 

l i m E ^ ^ = 2 7 r E d(cp-2wm). 

S—»oo m=—oo 

Using (All) , we find for (A9) 

1 
F(V)= £ d(V-mv0) 

(A10) 

(All) 

(2wV/vo)1/2 

/nvoWo\z 

X( J exp(—nwo+V/vo). (A12) 

-^o'O. (A8) 

Equation (A12) agrees with (A2) upon substituting 
Stirling's approximation for ml and discarding the 
spurious solutions with m negative. The solution s=0 
is the only point of stationary phase which could be 
found by expanding the exponential in (A3) as was done 
in Sec. IV. Keeping only 5 = 0 in Eq. (A9), the result is 
the same as (A2) if we average the 8 function peak over 
the interval z>o between peaks. We have been unable to 
determine what importance other points of stationary 
phase, if they exist, might have in the problem of 
Sec. IV. For n^l, F(V) could be evaluated numerically, 
but in view of the limitations on the whole approach 
imposed by the treatment of the kinetic energy [see 
Eq. (25)] it does not seem worthwhile. 


